Kecerdasan Buatan dan Pembelajaran Mesin

Segera, saksikan video ini untuk memahami hubungan antara AI dan pembelajaran mesin. Anda akan melihat bagaimana kedua teknologi ini bekerja, dengan contoh dan beberapa kejadian lucu.

Plus, ini adalah video yang luar biasa untuk dibagikan kepada teman dan  keluarga untuk menjelaskan kecerdasan buatan dengan cara yang dapat dimengerti oleh siapa pun

Mengapa kecerdasan buatan penting?

  • AI mengautomasi pembelajaran dan penemuan berulang melalui data. Tetapi AI berbeda dengan automasi robotik yang digerakkan oleh perangkat keras. Alih-alih mengautomasi tugas manual, AI melakukan tugas-tugas yang sering, bervolume tinggi, terkomputerisasi dengan andal dan tanpa mengalami kelelahan. Untuk jenis automasi ini, penyelidikan manusia masih penting untuk mengatur sistem dan mengajukan pertanyaan yang tepat.
  • AI menambahkan kecerdasan pada produk-produk yang ada. Di sebagian besar kasus, AI tidak dijual sebagai aplikasi individu. Akan tetapi, produk yang sudah Anda gunakan akan ditingkatkan dengan kemampuan AI, mirip seperti Siri yang ditambahkan sebagai fitur pada generasi baru produk Apple. Automasi, platform percakapan, bot, dan mesin pintar dapat dikombinasikan dengan sejumlah besar data untuk meningkatkan banyak teknologi di rumah dan di tempat kerja, mulai dari intelijen keamanan hingga analisis investasi.
  • AI beradaptasi melalui algoritme pembelajaran progresif guna memungkinkan data melakukan pemrograman. AI menemukan struktur dan keteraturan dalam data sehingga algoritme memperoleh keterampilan: Algoritme menjadi pengklasifikasi atau prediktor. Jadi, sama seperti algoritme yang dapat mengajarkan dirinya sendiri cara bermain catur, AI dapat mengajarkan sendiri produk apa yang akan direkomendasikan berikutnya secara online. Dan model-model beradaptasi saat memberikan data baru. Propagasi belakang merupakan teknik AI yang memungkinkan model untuk beradaptasi, melalui pelatihan dan data yang ditambahkan, saat jawaban pertama tidak terlalu tepat.

  • sumber: https://www.sas.com/id_id/insights/analytics/what-is-artificial-intelligence.html
  • AI menganalisis data lebih banyak dan lebih dalam menggunakan jaringan neural yang memiliki banyak lapisan tersembunyi. Membangun sistem deteksi penipuan dengan lima lapisan tersembunyi hampir tidak mungkin beberapa tahun yang lalu. Semuanya berubah dengan kekuatan komputer yang luar biasa dan big data. Anda memerlukan banyak data untuk melatih model pembelajaran mendalam karena model tersebut belajar langsung dari data. Semakin banyak data yang Anda umpankan kepada model, semakin akurat model tersebut.
  • AI mencapai keakuratan mengagumkan melalui jaringan neural mendalam – yang sebelumnya tidak dimungkinkan. Misalnya, interaksi Anda dengan Alexa, Google Search, dan Google Photos semuanya didasarkan pada pembelajaran yang mendalam – dan ketiganya terus menjadi semakin akurat karena kita semakin sering menggunakannya. Di bidang medis, teknik AI dari pembelajaran mendalam, klasifikasi citra, dan pengenalan objek sekarang dapat digunakan untuk menemukan kanker pada MRI dengan akurasi yang sama seperti ahli radiologi yang terlatih.
  • AI memanfaatkan sebagain besar data. Jika algoritme merupakan pembelajaran mandiri, data itu sendiri dapat menjadi kekayaan intelektual. Jawabannya ada dalam data; Anda hanya perlu menerapkan AI untuk mendapatkannya. Karena peran data kini semakin penting dari sebelumnya, data dapat menciptakan keunggulan kompetitif. Jika Anda memiliki data terbaik dalam industri kompetitif, bahkan jika seseorang menerapkan teknik serupa, data terbaiklah yang akan menang.

 Copyright stekom.ac.id 2018 All Right Reserved